# Parallel Processing Using Linux PCs: What Is And Isn't There

Hank Dietz
Associate Professor of Electrical and Computer Engineering
Purdue University
West Lafayette, IN 47907-1285
hankd@ecn.purdue.edu
http://dynamo.ecn.purdue.edu/~hankd

#### What Is And Isn't There?

- Parallel PC architectures:
  - SIMD Within A Register (e.g. Intel MMX)
  - Shared-memory multiprocessors (e.g., Intel MPS)
  - Attached processors
  - Clusters (networks?)
- The Linux OS:

(http://sunsite.unc.edu/mdw/linus/html)

- A nice, free, highly popular UNIX
- Support for parallelprocessing?

## SIMD Within A Register (SWAR)

- Popularized as multimedia support
- Partition 32-bit/64-bit/128-bit registers, datapaths, and function units into multiple k-bit fields
- Perform SIMD operations across fields
- Integer operations only
- Improved badwidth, Loads/Stores treat fields as a block
- RISC-like SIMD control minimizes VLSI complexity, pipeline constraints

#### SWAR Hardware Architecture

- AMD K6 MMX (MultiMedia eXtensions)
- Cyrix M12 MMX (MultiMedia eXtensions)
- Digital Alpha MAX (MultimediA eXtensions)
- Hewlett-Packard PA-RISC MAX (Multimedia Acceleration eXtensions)
- Intel Pentium & Pentium 2 MMX (MultiMedia eXtensions)
- Sun SPARC V9 VIS (Visual Instruction Set)
- MIPS Digital Media eXtension (MDMX, "Mad Max")
- PowerPC will have SWAR support
- Ordinary 32-bit/64-bit processors

#### A General SWAR Model

- Manufacturer SWAR support is machine dependent
  - Different (often irregular) instructions
  - Different width registers, fields
  - Different register use constraints
     (e.g., can't mix MMX with floating point)
  - HLL models specify each instruction
- Need complete SIMD/vector features
- Need variable size/parallelism-width data
- Cannot have HLL-visible "holes" (i.e., omit quirky SWAR instructions)

#### How to fill the SWAR Gaps?

- A simple example ...
- Use ordinary 32-bit/64-bit op, but correct for field interactions
- For 8 4-bit fields in a 32-bit register:

```
return (x + y);

t = ((x & 0x77777777) + (y & 0x77777777));

return (t ^ ((x § y) & 0x88888888));
```

What Is And Isn't There Hank Dietz

## **SWAR Summary & Status**

- Promising "new" integer SIMD/vector technology
  - + SIMD, tiny latency, cheap communication
  - Doesn't do MIMD nor message-passing
- Linux (or other OS) doesn't care
- Developing SWAR module languages/compilers

http://dynamo.ecn.purdue.edu/~hankd/SWAR/

## **Shared - Memory Multiprocessors**

- Multiple processors share some address space
- Processors communicate by
  - Storing into and loading from shared space
  - Signals or interrupts
- Access time not constant, but a function of:
  - Address (e.g., local versus remote)
  - History (e.g., caching, ownership protocols)

#### **Shared Memory Architecture**

- Basic SMP software interface:
  - Intel Multiprocessor Standard (MPS) 1.1 and 1.4, http://www.intel.com/IAL/processr/mpovr.htm
  - Does not specify hardware implementation nor performance
- Shared cache, shared bus, multiple busses, etc.
- Many vendors ... cheap for 2-4 PEs

http://www.uruk.org/~erich/mps-hw.html

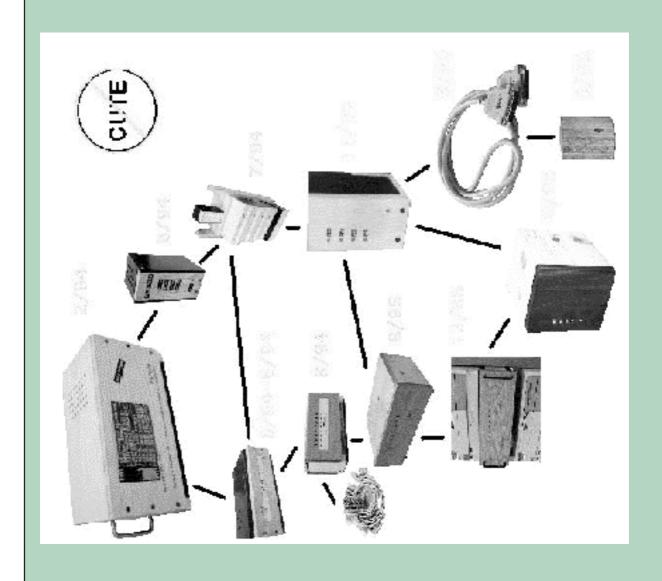
## Linux Support for SMP

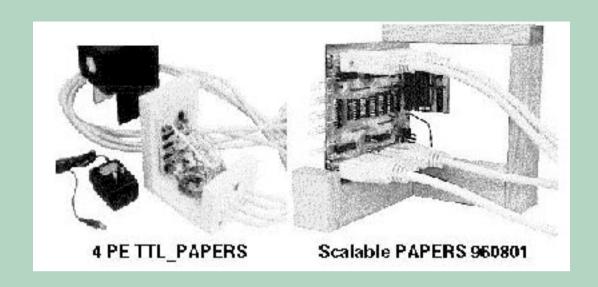
- Linux 2.0 kernel *standarly* supports
  - MPS with up to 16 Pentium Pro, Pentium, or 486
  - Sun4m SPARC machines (not our focus here)
- Must rebuild kernel ...
   only change is uncomment SMP=1 in makefile
- Currently only 1 CPU in kernel at a time
  - + Everything works
  - Locked system calls, dumb scheduler

## **Programming Models**

- "Shared everything"
   (Gnu C libraries are not thread-safe)
  - bb\_threads uses Linux clone() call
- "Shared something"
  - System V IPC shared memory segments
  - mmap() segments
- volatile, "false sharing," scheduler issues, etc. http://yara.ecn.purdue.edu/~pplinus/ppsmp.html
  - + MIMD, µs latency, shared-memory, message-passing
  - Surprises, scaling trouble, I/O contention

#### **Attached Processors**


- Linux PC hosts other processors
- Lots of add-ons, all different (e.g., DSP cards, reconfigurable FPGAs, ICE DRE)
- Linux PCs are good hosts:
  - Full source code, "hacking" guides
  - Good near-real-time scheduling
  - Linux uses Intel I/O port protection
  - Can fun DOS tools under dosemu
- Very cost effective ... once you've done it ;-)


## Clusters (Networks?)

- Some networks do not scale: CAPERS, ParaPC, PLIP, & SLIP
- Some networks are not (yet) widely available: SCI, FC, SHRIMP, ParaPC, USB, & Firewire
- Some networks are not (yet) supported by Linux: HiPPI, Serial HiPPI, SCI, FC, ParaPC, USB, & Firewire
- This leaves only:
   Myrinet, ParaStation, PAPERS, ATM, various Ethernets,
   & ARCNET

| Use                   | Myrinet | <b>ParaStation</b> | PAPERS | ATM  | Ethernet        | ARCNET |
|-----------------------|---------|--------------------|--------|------|-----------------|--------|
| MIMD                  | Good    | Good               | Fair   | Good | Good            | Good   |
| SIMD                  | Poor    | Fair               | Good   | Poor | Poor            | Poor   |
| Message<br>Passing    | Good    | Good               | Poor   | Good | Good            | Good   |
| Shared<br>Memory      | Fair    | Fair               | Good   | Poor | Poor            | Poor   |
| Aggregate Functions   | Poor    | Poor               | Good   | Poor | Poor            | Poor   |
| Bandwidth             | Good    | Good               |        | Good | Good            | Poor   |
| Latency               | Good    | Good               | Good   | Fair | Poor            | Poor   |
| Standard?             | No      | No                 | No     | Yes  | Yes             | Yes    |
| PC Cost<br>Multiplier | 1.9x    | 2.0x               | 1.1x   | 2.5x | 1.1x<br>1.3x sw | 1.2x   |
| Within                |         |                    |        |      | 11021 5 11      |        |

Assumes PC Cost is \$2,000 ...





- PAPERS is Purdue's Adapter for Parallel Execution and Rapid Synchronization
- Aggregate function network for parallel processing
- Public hardware design and AFAPI library

What Is And Isn't There Hank Dietz

#### What's In PAPERS?

- Each PC connects via standard parallel port ...
- Will improve bandwidth, add aggregates
- PAPERS unit contains 4 subsystems:
  - Fast barrier synchronization hardware
  - LED status display
  - Aggregate function data communication
  - Parallel signal support

#### **Barrier Synchronization**

- An arbitrary group of PCs can participate
- No PC executes past a barrier until all have arrived
- Two-cycle barriers using two barrier units:
  - 1. Output: present at barrier, reset barrier
  - 2. Input: poll for all PCs present
- Synchronization time:
  - < 0.1 µs logic,  $\le$ 0.2 µs cable, 1 µs port register
  - Total <3 μs for 4 PCs; <7 μs for 2,000+ PCs

## LED Status Display

- Blue power on
- Bi-color LED/PE
  - Green: running
  - Red: at barrier
  - Orange: in OS
  - Black: not parallel code

#### **Aggregate Functions**

- Not shared memory nor message passing: a *group* of PEs initiates each op
- As a barrier side-effect, each PC can:
  - 1. Output: a datum
  - 2. Input: selected function of data from all PCs
- Can sample global state in O(1) time
- Examples: broadcast, multi-broadcast, associative reductions, scans (parallel prefix), SIMD/VLIW conditionals, voting and scheduling ops

## Performance (µs latency)

| Machine         | Barrier<br>Sync. | 32-bit PutGet (permutation) | 64-bit<br>Broadcast |
|-----------------|------------------|-----------------------------|---------------------|
| MasPar MP-1     | 0.1              | 44.0                        | 31.0                |
| 486 Linux       |                  |                             |                     |
| (PAPERS1)       | 3.1              | 27.0                        | 81.0                |
| Cray T3D (PVM)  | 21.0             |                             | 82.0                |
| 486 Linux       |                  |                             |                     |
| (TTL_PAPERS)    | 2.5              | 216.0                       | 137.0               |
| Intel Paragon   |                  |                             |                     |
| XP/S            | 530.0            | 700.0                       | 210.0               |
| 486 Linux       |                  |                             |                     |
| (Ethernet PVM3) | 49,000.0         | 100,000.0                   | 40,000.0            |


What Is And Isn't There Hank Dietz

#### Parallel Signals

- Any PC can asynchronously signal all PCs
- Separate barrier used for signal acknowledge
- Used for:
  - Parallel job control, gang scheduling
  - Asynchronous shared memory
  - Asynchronous message passing

#### A Simple Demonstration

- Cluster of 4 Linux sub-notebooks
- Multi-voice music
- PCs agree on who plays each note;
   PCs without notes have red LEDs
- Note played by toggling PC speaker
- Without precise coordination, it isn't music



- Integer SWAR promising, but there's work to do
- SMP MPS useful now, but not as good as it seems
- Attached processors get an "M" rating
- Clusters with appropriate connections work well (e.g., 100 Mb/s Ethernet + PAPERS)
- "Stock" LANs work only for coarse-grain MIMD